Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Gu, Yaodong (Ed.)Traditional gait event detection methods for heel strike and toe-off utilize thresholding with ground reaction force (GRF) or kinematic data, while recent methods tend to use neural networks. However, when subjects’ walking behaviors are significantly altered by an assistive walking device, these detection methods tend to fail. Therefore, this paper introduces a new long short-term memory (LSTM)-based model for detecting gait events in subjects walking with a pair of custom ankle exoskeletons. This new model was developed by multiplying the weighted output of two LSTM models, one with GRF data as the input and one with heel marker height as input. The gait events were found using peak detection on the final model output. Compared to other machine learning algorithms, which use roughly 8:1 training-to-testing data ratio, this new model required only a 1:79 training-to-testing data ratio. The algorithm successfully detected over 98% of events within 16ms of manually identified events, which is greater than the 65% to 98% detection rate of previous LSTM algorithms. The high robustness and low training requirements of the model makes it an excellent tool for automated gait event detection for both exoskeleton-assisted and unassisted walking of healthy human subjects.more » « lessFree, publicly-accessible full text available February 10, 2026
-
The competition for resources is a defining feature of microbial communities. In many contexts, from soils to host-associated communities, highly diverse microbes are organized into metabolic groups or guilds with similar resource preferences. The resource preferences of individual taxa that give rise to these guilds are critical for understanding fluxes of resources through the community and the structure of diversity in the system. However, inferring the metabolic capabilities of individual taxa, and their competition with other taxa, within a community is challenging and unresolved. Here we address this gap in knowledge by leveraging dynamic measurements of abundances in communities. We show that simple correlations are often misleading in predicting resource competition. We show that spectral methods such as the cross-power spectral density (CPSD) and coherence that account for time-delayed effects are superior metrics for inferring the structure of resource competition in communities. We first demonstrate this fact on synthetic data generated from consumer-resource models with time-dependent resource availability, where taxa are organized into groups or guilds with similar resource preferences. By applying spectral methods to oceanic plankton time-series data, we demonstrate that these methods detect interaction structures among species with similar genomic sequences. Our results indicate that analyzing temporal data across multiple timescales can reveal the underlying structure of resource competition within communities.more » « lessFree, publicly-accessible full text available January 12, 2026
-
Acute myeloid leukemia (AML) is characterized by uncontrolled proliferation of poorly differentiated myeloid cells, with a heterogenous mutational landscape. Mutations in IDH1 and IDH2 are found in 20% of the AML cases. Although much effort has been made to identify genes associated with leukemogenesis, the regulatory mechanism of AML state transition is still not fully understood. To alleviate this issue, here we develop a new computational approach that integrates genomic data from diverse sources, including gene expression and ATAC-seq datasets, curated gene regulatory interaction databases, and mathematical modeling to establish models of context-specific core gene regulatory networks (GRNs) for a mechanistic understanding of tumorigenesis of AML with IDH mutations. The approach adopts a new optimization procedure to identify the top network according to its accuracy in capturing gene expression states and its flexibility to allow sufficient control of state transitions. From GRN modeling, we identify key regulators associated with the function of IDH mutations, such as DNA methyltransferase DNMT1, and network destabilizers, such as E2F1. The constructed core regulatory network and outcomes of in-silico network perturbations are supported by survival data from AML patients. We expect that the combined bioinformatics and systems-biology modeling approach will be generally applicable to elucidate the gene regulation of disease progression.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Hydrogen evolution is not a spontaneous reaction, so current electrochemical H 2 systems either require an external power supply or use complex photocathodes. We present in this study that by using electrical decoupling, H 2 can be produced spontaneously from wastewater. A power management system (PMS) circuit was deployed to decouple bioanode organic oxidation from abiotic cathode proton reduction in the same electrolyte. The special PMS consisted of a boost converter and an electromagnetic transformer, which harvested energy from the anode followed by voltage magnification from 0.35 V to 2.2–2.5 V, enabling in situ H 2 evolution for over 96 h without consuming any external energy. This proof-of-concept demonstrated a cathode faradaic efficiency of 91.3% and a maximum overall H 2 conversion efficiency of 28.9%. This approach allows true self-sustaining wastewater to H 2 evolution, and the system performance can be improved via the PMS and reactor optimization.more » « less
An official website of the United States government
